VII Introduction to Convex Surfaces
let $(M, 3)$ be a contact 3 -manifold a vector field v is a contact vector field if its flow preserves 3
If α is a contact form for 3 , then r is a contact vector field
if flow ϕ_{t} of v presences $\}=$ ger α
which is equivalent to

$$
\mathscr{L}_{v} \alpha=\left.\frac{d}{d t} \phi_{t}^{*} \alpha\right|_{t=0}=\left.\frac{d}{d t} f_{t} \alpha\right|_{t=0}=g \alpha
$$

for any $g: M \rightarrow \mathbb{R}$
so v is a contact vector field $\Leftrightarrow \mathcal{L}_{v} \alpha=g \alpha$
example:
x_{α} Reek vector field of α

$$
\tilde{x}_{x_{\alpha}} \alpha={ }_{x_{\alpha}} d_{\alpha}+d^{\prime}{ }_{x_{\alpha}} \alpha=0+d 1=0
$$

$\therefore X_{\alpha}$ a contact vector field
note also X_{α} is transverse to?
exercise:
(1) Show a contact vector field v is a Reed field for Some $\alpha \Leftrightarrow V$ is transverse to $\}$
(2) show a contact vector field v is a ways tangent to?

$$
\begin{array}{r}
\Leftrightarrow \\
v=0
\end{array}
$$

lemma 1:
$(M, 3)$ a contact manifold α a contact form for ?
a vector field v is a contact vector field

$$
\Leftrightarrow
$$

there is a function $H: M \rightarrow \mathbb{R}$ st.

$$
\begin{aligned}
& \alpha(v)=-H \\
& \iota_{v} d \alpha=d H-\left(d H\left(x_{\alpha}\right)\right)_{\alpha}^{R e}
\end{aligned}
$$

Proof: assume v is a contact vector field
set $H=-\alpha(v)$
now $g \alpha=\mathscr{L}_{v} \alpha=d_{c_{v} \alpha}+l_{v} d \alpha=-d H+c_{v} d \alpha$
So $l_{v} d \alpha=d H+g \alpha$
plug Reeb field X_{α} into equation to get

$$
\begin{aligned}
0 & =d H\left(x_{\alpha}\right)+g \\
\text { so } c_{v} d \alpha & =d H-d H\left(x_{\alpha}\right) \alpha
\end{aligned}
$$

now of v satisfies equations then

$$
\begin{aligned}
\tilde{L}_{v} \alpha=l_{v} d \alpha+d_{1 v} \alpha & =d H-\left(d H\left(x_{\alpha}\right)\right) \alpha-d H \\
& =-d H\left(x_{\alpha}\right) \alpha
\end{aligned}
$$

so v contact field
exencise:
given $H: M \rightarrow \mathbb{R}$ there is some vector field v satisfying equations in lemma 1

Remarki this says any locally defined contact vector field can be extended to a global one
a surface Σ in a contact manifold (μ, T) is convex if there is a contact vector field v transverse to Σ
lemma 2:
a surface Σ is convex $x \Leftrightarrow \exists$ an embedding $\Sigma x \mathbb{R} \xrightarrow{\phi} M$ such that $\phi\left(\sum x\{0\}\right)=\sum$ and $\left.\phi^{*}(\}\right)$ is vertically invariant (that is variant in the \mathbb{R}-direction)

Proof:
if Σ is convex, then let v be the transverse contact v.f. set $H=-\alpha(v)$ (some contact form α for 3) cut off H near \sum (so it has compact support) let v^{\prime} be the contact vii. associated (by lemma) to new function
flow of v^{\prime} (whichestist for all time snice has compact support) gives ϕ
conversely, given ϕ let t be coordinate on \mathbb{R}
the vector field $v=\phi_{*} \frac{\partial}{\partial t}$ is a contact vf. transverse to Σ
exencise: If Σ is a convex surface is $\left(\mu_{1}\right)$), then show, using lemma above, that \sum has a neighborhood $\sum x[-1,1]$ such that 3 is given by a 1-form

$$
\alpha=\beta+u d t
$$

B a I-form on Σ and $u: \Sigma \rightarrow \mathbb{R}$
note no t dependence for β, u
note: with α as above

1) $\Sigma_{3}=\operatorname{ker} \beta$
2) for α to be contact we need

$$
\begin{aligned}
\alpha \wedge d \alpha & =\beta \wedge(d \beta+d u \wedge d t)+u d t \wedge \beta \\
& =(\beta \wedge d u+u d \beta) \wedge d t>0
\end{aligned}
$$

so

$$
\begin{equation*}
\beta \wedge d u+u d \beta>0 \tag{1}
\end{equation*}
$$

lemma 3:
let \sum be a surface in (μ, ξ)
2: $\Sigma \rightarrow M$ the inclusion map
α a contact form for $\{$

$$
\beta=2^{*} \alpha
$$

the surface Σ is conner

$$
\Leftrightarrow
$$

\exists a function $u: \Sigma \rightarrow \mathbb{R}$ st. $u d \beta+\beta$ urdu >0

Proof:
If Σ is convex we are done from above
If u exists then on $\sum \times \mathbb{R}$ consider the contact structure

$$
\operatorname{ker}(\beta+u d t)
$$

char to ll on $\sum x\{0\}$ and Σ are the same
\therefore we have neighborhoods of $\sum x\{0\}$ and Σ that are contactomophic and contactomophism sends $\frac{\partial}{\partial t}$ to a contact vector field transverse to Σ
dualize equation (1): fix an area form on \sum
so there is a vector field w on Σ such that

$$
l_{w} \omega=\beta
$$

note ω is in $\operatorname{ker} \beta$ and so directs Σ_{3}
(ie. tangent to Σ_{3} and 0 at singularities)
if Σ convex then

$$
\begin{align*}
& \beta \wedge d u+u d \beta>0 \\
& \beta \wedge d u+u\left(d i i_{\omega} w\right) \omega \\
& c_{w} \omega \wedge \text { n } u+u\left(d i v_{\omega} w\right) \omega \\
& \left(-d u(w)+u d i i_{\omega} w\right) \omega \\
& \text { I recall dunk }=0 \text { so } \\
& c_{w}\left(d_{u} u \omega\right)=0 \\
& d_{u}(\omega) \omega-d_{u} l_{w} \omega \\
& \text { So }-d u(w)+u d i v, w>0 \tag{2}\\
& d u(\omega) \omega+c_{w} \omega \wedge d u
\end{align*}
$$

exercise: for a fixed β set of u satisfying (1) is convex

$$
" \quad \text { " } w
$$

(2) is convex
example (of non convex surface):

$$
\begin{aligned}
& \mathbb{R}^{3} \quad \operatorname{coords}(r, \theta, z) \\
& M=\mathbb{R}^{3} / z \mapsto z+1 \\
& 3=\operatorname{ker}\left(d z+r^{2} d \theta\right) \\
& T_{c}=\{(r, \theta, z) \mid r=c\}
\end{aligned}
$$

characteristic fol's on T_{c} is linear
note β above on T_{c} is $d z+c^{2} d \theta$
So $d \beta=0$
if $\omega=d \theta$ adz on T_{c} then $w=c^{2} \frac{\partial}{\partial z}-\frac{\partial}{\partial \theta}$
satiofieis $c_{w} \omega=\beta$ so w directs char. fol ${ }^{n}$ and $d i_{\omega} w=0$
\therefore if T_{c} convex \exists a function $u: T_{c} \rightarrow \mathbb{R}$ such that $-\operatorname{du}(\omega)>0$
so w decreases along flow lines leaves of $\left(T_{c}\right)_{3}$ are closed \otimes or dense so T_{c} not convex
exercise:
let \sum be a surface in $(\mu, 3)$
if one of the following is true then Σ is not convex
(1) $\sum_{\text {, has a flow line from a negative to a }}$ positive singularity
(2) Σ_{3} has a dense leaf.
given a surface Σ
a singular foliation 7 on \sum properly embedded arcs and simple closed curves we say a multi-curve Γ divides 7 if
(1) $\Sigma \backslash \Gamma=\Sigma_{+} \Perp \Sigma_{-}$
(2) Γ is transverse to F and
(3) there is a volume form ω on Σ and vector field w on Σ such that
(a) $\pm d i v_{w} v>0$ on $\Sigma_{ \pm}$
(b) w directs 7
(c) w points out of Σ_{+}along $\partial \Sigma_{+}-\left(\partial \Sigma_{+} \cap \partial \Sigma\right)$
exencise: if Γ_{1}, Γ_{2} both divide \mathcal{F} then Γ, and Γ_{2} are isotopic through dividing curves
if Σ is a convex surface then near Σ we can write the contact form $\beta+u d t$ the multi-curve

$$
\Gamma_{\Sigma}=\{x \in \Sigma: u(x)=0\}
$$

$5^{\text {can assume } 0 \text { a }}$ regular value of u
is called the dividing set of \sum
Th쓴:
given a compact orientable surface Σ in $(\mu, 3)$ with $\partial \Sigma$ Legendrian Then
Σ is convex \Leftrightarrow there is a dividing set for Σ_{3}
we will prove this theorem and the ones below later but now we give a user's guide to convex surfaces and then see how they are used to study contact structures
examples:

1) S^{2} unit sphere in \mathbb{R}^{3} with $\}=\operatorname{ker}\left(d z+r^{2} d \theta\right)$

in deed if $v=\frac{1}{2} r \frac{\partial}{\partial r}+z \frac{\partial}{\partial z}$
then $\mathcal{L}_{v} \alpha=\alpha$ so v contact and $\alpha(v)=z$ so $\Gamma_{s^{2}}=\{z=0\}$
2) recall

$$
\begin{aligned}
T_{c}=\{(r, \theta, z) \mid r & =c\} c \mathbb{R}^{3} / z \mapsto z+1 \\
\text { wish }\} & =\text { her }\left(d z+r^{2} d \theta\right)
\end{aligned}
$$

above we saw T_{c} not convex $\left(T_{c}\right)_{3}$ is a linear foliation choose c so slope is rational $\frac{p}{q}$ pick 2 orbits γ, δ of $\left(T_{c}\right)_{3}$

changed coordinates on torus so picture clearer
$T_{c}-(\gamma \cup \delta)=A_{1} \cup A_{2} \quad 2$ cannoli
push A_{1} out a little and A_{c} in a little to get T^{\prime}
with $T_{\}}^{\prime}$

note the new torus has dividing curves so is convex So a c^{∞} small perturbation of the non-wvex T_{c} is convex!
note: we could have perturbed T_{c} to have any even number of dividing curves
more generally we have

Th ${ }^{m}$ 5:
any closed surface is c^{∞}-close to a convex surface if \sum contains Legendrian curves $L_{1} \ldots L_{k}$ with $t_{j}\left(L_{j}, \Sigma\right) \leq 0$ for all i, then Σ may be C^{0}-isotoped near L_{i} and c^{∞}-isotopes away from the L_{i} to become convex
so convex surfaces are very common!
Th ${ }^{\text {m }} 6$ (Giroux flexibility):
suppose. $\Sigma_{\text {a compact surface in }\left(M_{1},\right)}$

- Edosed or has $\partial \Sigma$ Legendicion with non positive twisting along each component of $\partial \Sigma$
- Σ is convert with dividing curves Γ_{Σ} and transverse contact vector field v
- $i: \Sigma \rightarrow M$ the inclusion map
let $\Gamma=i^{-1}\left(\Gamma_{\Sigma}\right)$ and \exists be any singular foliation on Σ that is divided by Γ
Then in any neighborhood U of Σ in μ, there is an isotopy $\phi_{s}: \Sigma \rightarrow M$ for $s \in[0,1]$ such that
(1) $\phi_{0}=i$
(2) ϕ_{s} is fixed on Γ
(3) $\phi_{s}(\Sigma)<u$ for all s
(4) $\phi_{s}(\Sigma)$ is transverse to $v(:$ convex)
with $\Gamma_{\phi_{s}(\Sigma)}=\Gamma_{\Sigma}$
(5) $\left(\phi_{1}(\Sigma)\right)_{3}=\phi_{1}(\mathcal{F})$
recall Th III. 5 says Σ_{3} determines $\}$ near Σ, coupled with the above we see Γ_{Σ} more or less determines $?$ near Σ
way easier to understand multi-curres than foliations!
example:
this flexibility is very powerful!
in the example above we saw a torus with foliation

now consider the singular foliation

called
ruling
curves
this singular foliation is (different from slope of also divicted by Γ so we may isctop the torus to have this fol ${ }^{11}$ as characteristic fol 1 !
this is surprising as fol ${ }^{2}$ is very non generic and we car realize any slopes (\neq slope of sing. lines)
we call a torus with foliation as above a torus in standard form and it is determined by the slope of the dividing curves and the slope s (any $s \neq r$) of the ruling curves
let \sum be a convex surface in $(M, 3)$ Γ_{Σ} the dividing curves
a graph $G \subset E$ is called non-isolating if G is transverse to Γ_{Σ}
and every component of $\Sigma \backslash G$ intersects Γ_{Σ}
Th 7 (Legendrian Realization Principle or LERP):
Ea convex surface in (μ, ζ)
G a graph in Σ that is non isolating
Then there is an isotopy of $\Sigma($ rel $\partial \Sigma)$ through convex surfaces to Σ^{\prime}, s.t. G is contained in the characteristic fol " of Σ^{\prime}
a useful corollary is
Corollary 8:
If C is a simple closed curve in a convex surface Σ
that nontrivally and transversely intersects Γ_{Σ} then Σ may be isotoped so that C is Legendrcan on Σ
we can say a lot about Legendrian curves on a convex surface

Th ${ }^{m} q$:
let L be a Legendrian simple closed curve in a convex surface \sum that is transverse to, then

$$
\operatorname{tw}_{3}(L, \Sigma)=-\frac{1}{2} \#\left(L \cap \Gamma_{\Sigma}\right)
$$

If $L=\partial \Sigma$, then this gives th(L, moreover

$$
r(L)=X\left(\Sigma_{+}\right)-X\left(\Sigma_{-}\right)
$$

we can also understand tightness using conver-surfaces

Th i 10 (the Ginoux Criterion):
\sum a convex surface in $\left.(\mu\},\right)$
a vertically invariant neighborhood of Σ is tight
\Leftrightarrow
(1) $\Sigma=s^{2}$ and Γ_{Σ} is connected, or
(z) $\Sigma \neq S^{2}$ and Γ_{Σ} has no components bounding a disk
we end by seeing how to "transfer information" between convex surfaces
lemma 11:
Σ, Σ^{\prime} convex surfaces with dividing sets $\Gamma_{\Sigma}, \Gamma_{\Sigma}$ ' $\partial \Sigma^{\prime} C \Sigma$ a Legendrian curve
let $S=\Gamma_{\Sigma} \cap \partial \Sigma^{\prime}$ and $S^{\prime}=\Gamma_{\Sigma}, \cap \partial \Sigma^{\prime}$
then between any two adjacent points of S there is one point of S^{\prime}, and vice-versa

Pictorially

we can say a liftle more
lemma 12: \qquad and look like

then one can "round the corner" to get a smooth convex surface with dividing set

